

NuPhotonics

Rev. 1.0 - April. 2024

Part Number: AP10A-TO-X-XX Product State: Production Build

10G InGaAs Avalanche Photodiode W/TIA

Description

The A10-TO is a high sensitivity 10G APD-TIA receiver in a pigtail fiber coupled TO package. It includes a 10G avalanche photodiode with a high gain TIA in a hermetically sealed package.

Features

- Dark Current ~ 25 nA (typical)
- High Sensitivity ~28 dBm
- Terminal Capacitance 1 pF at VBR_{90%}
- 8 GHz Cutoff Frequency
- 4K Ohm Transimpedance Gain
- Ability to choose desired optical connector.
- Ability to choose desired fiber length.

Applications

- 10G RFoF
- 10G Base-L Ethernet
- Fiber Optic Sensors

Electro-Optical Characteristics (T_{op} 23 ± 3°c, unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Supply Voltage	V_{cc}		3.3	3.6	V	
Supply Current	I _{cc}		26	35	mA	V _{cc} = 3.3 V
Response Spectrum	λ	1100		1650	nm	V _{cc} = 3.3 V
Bandwidth	BW		8		GHz	-3 dB bandwidth
Overload	OL	2.2			dBm	V _{cc} = 3.3 V
Sensitivity	Sen			-27	dBm	25.78 Gbps, 1310 nm, ER = 4 dB, BER = 10 ⁻⁵
Optical Return Loss	ORL			-27	dB	CW = 1310 nm
RSSI Offset Current	I _{RSS}			100	nA	V _{cc} = 3.3 V
Responsivity	R	0.7	0.8		A/W	1310 nm, 50 % VBR, M=2, Pin -20 dBm
Dark Current	Id		25	100	nA	VBr
Operation Current	I _{op}		6		uA	
Output Impedance	Z-o		100			Differential
Maximum Output Voltage	Vo		300		mV _{p-p}	Differential
Low Frequency Cutoff	F _{low}	25	100		KHz	

Absolute Maximum Ratings

Parameter	Symbol	Condition	Min.	Max.	Unit
Reverse Voltage	V _r			40	V
Forward Current	I _F			8	mA
Reverse Current	I _R			0.5	mA
Optical Input power	P _{in}			10	mW
Storage Temperature	T_{stg}		-25	90	°C
Storage Humidity	H _{stg}			85	% r.H.
Operating Temperature	T _{op}		-10	80	°C
Soldering Temperature	T _{st}	60 sec		200	°C
ESD Susceptibility		НВМ	100		V

Operating at maximum ratings for a prolonged period will cause damage to the device.

Pin Configuration

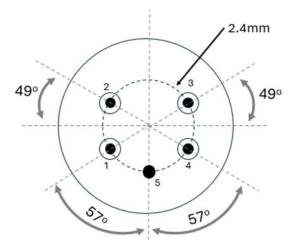


Fig 1A: Bottom View

Pin Number	Function		
1	Dout (+)		
2	VCC		
3	VAPD		
4	Dout (-)		
5	GND		

Table 1: Device Pin out

Device Dimensions

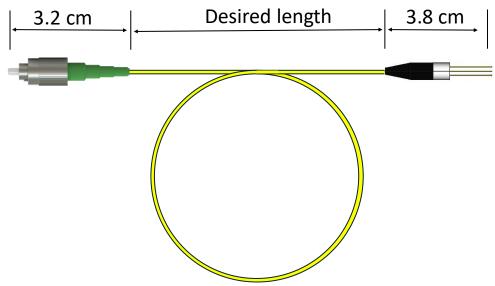
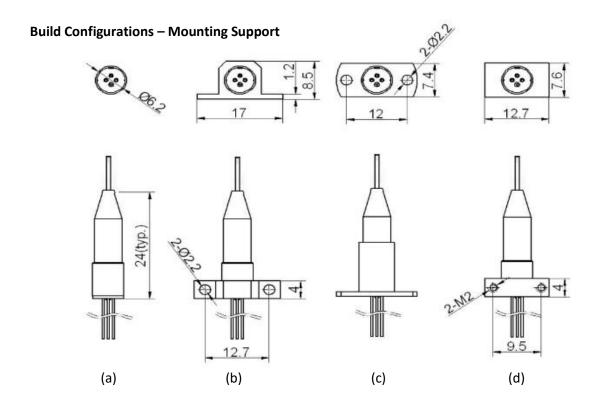
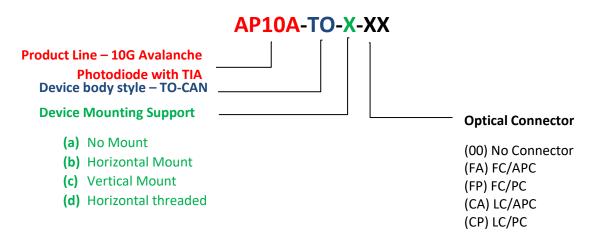




Fig 2: Device mechanical drawing. (All units in mm). Fiber and connector size differs based on build configuration.

Device Nomenclature

Inquiry Information

Sales: All inquiries regarding sales please contact Sales@NuPhotonics.com

General: If you are interested in a custom solution, general information, or engineering related information please contact Inquiry@NuPhotonics.com

IMPORTANT NOTICES AND DISCLAIMERS

Warranty: NUPHOTONICS PROVIDES ALL OF THE INFORMATION ON TECHNICAL AND RELIABILITY DATA. THIS INCLUDES INFORMATION PRESENTED IN DATA SHEETS, DESIGN FILES, APPLICATIONS, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

The information and resources are presented and intended for developers that are skilled and adequately qualified to work with this technology. You, the customer, are solely responsible for and accept full responsibility for selecting the appropriate NuPhotonics devices for your application. You accept the sole responsibility of designing, validating, and testing your application. You bear all responsibility for your application meeting standards, safety, security, and other regulatory requirements.

NuPhotonics retains the right to change these resources without notice. All rights are reserved for NuPhotonics. NuPhotonics grants you permission to use the information in these resources to design with NuPhotonics devices. Reproduction and display of these resources is prohibited. No Third-party licenses are offered. You will fully indemnify NuPhotonics against any claims, damages, costs, losses, and liabilities that arise from you using these resources.

NuPhotonics does not accept and objects to any terms you have proposed.

For terms and conditions for all NuPhotonics products please refer to $\underline{www.nuphotonics.com} \ Legal \ section.$

Definitions: Product State

Alpha Build: Devices in Alpha build are in internal engineering build and testing stages. Major changes may happen for production build.

Beta Build: Devices in Beta build are for external customer and engineering sample testing stages. Minor changes may happen for production build.

Production Build: Customer ready devices. Small appearance changes may occur between devices.

Obsolete: Currently not supported.

Copyright © 2023, NuPhotonics LLC