

NuPhotonics

Rev. 0.6 - Oct. 2023

Part Number: RS-XXXXX-XX
Product State: Beta Build

RFoF System in Package

Description

An InGaAs Photodiode packaged directly with InP DFB Laser to offer a cohesive RFoF system in a ruggedized hermetic package. This package allows a user to connect directly to the precision SMA connector and begin transmitting and receiving over optical fiber. This unit only needs DC bias. The SMA connector is AC- coupled. The device comes with two FC/APC single mode fiber optic cables. Two fiber optic cables allows the InGaAs photodiode and InP laser to be connected at the same time to transmit or receive. This device comes with multiple build configurations for various operating frequencies.

Features

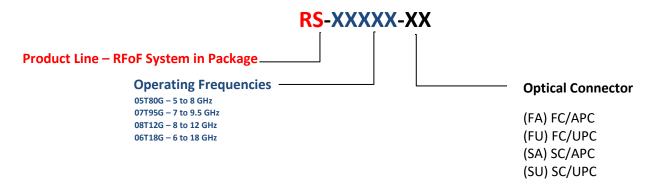
- Hermetic Package
- Precision field replaceable SMA connector
- 2 Single mode Pigtail cable
 - o Various optical connectors available
- Low Dark Current
- Photodiode Responsivity 0.7 A/W at 1310 nm
- High Laser optical output power
- High SFDR
- Multiple operating frequencies
- Excellent matching

Applications

- RF over Fiber (RFoF)
- 5G

Electro-Optical Characteristics (T_{op} 23 \pm 3°c, unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
PD Dark Current	ld		0.05	3.0	nA	Vr = 5.0 V
PD Reverse Breakdown Voltage	V _{BR}	20			V	Ι = 10 μΑ
PD Responsivity	Re	0.7			A/W	$\lambda = 1310 \text{ P}_{in} 0.5 \text{ mW V} = 1.0 \text{v}$ $\lambda = 1550 \text{ P}_{in} 0.5 \text{ mW V} = 1.0 \text{v}$
PD Capacitance	Ср		60	70	fF	F = 1 MHz V = 4.0 v
Laser Peak Wavelength	λ	1304.5	1310	1317.5	nm	
Laser Threshold Current	I _{th}		6	8	mA	T = 25 C
Laser Front Power	Po	6	9		mW	I _f = I _{th} + 20 mA
Laser Slope Efficiency	η	0.2	0.3		W/A	I _f = I _{th} + 20 mA
Laser Series Resistance	R			10	Ohms	Po=8 mW
Laser Forward Voltage	Vf		1.1	1.5	V	I _f = I _{th} + 20 mA
Laser Spectral wavelength (RMS)	Δλ		0.3	0.5	Nm	P _o = 5mW at – 20dB


Absolute Maximum Ratings

Parameter	Symbol	Condition	Min.	Max.	Unit
PD Reverse Voltage	V _r			10	V
PD Forward Current	I _F			10	mA
PD Reverse Current	I _R			5	mA
PD Optical Input power	P _{in}			10	mW
Storage Temperature	T_{stg}		-25	90	°C
Storage Humidity	H _{stg}			85	% r.H.
Operating Temperature	T _{op}		-10	80	°C
Soldering Temperature	T _{st}	60 sec		200	°C
ESD Susceptibility		НВМ	100		V

Operating at maximum ratings for a prolonged period will cause damage to the device.

Device Nomenclature

Device Dimensions

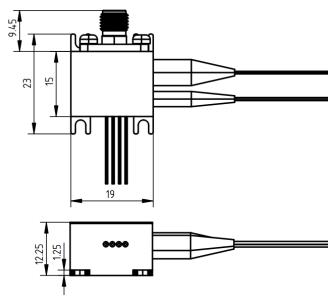
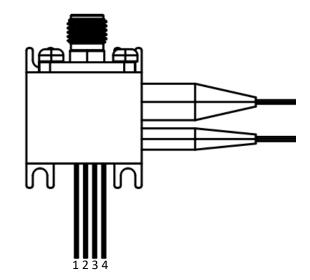
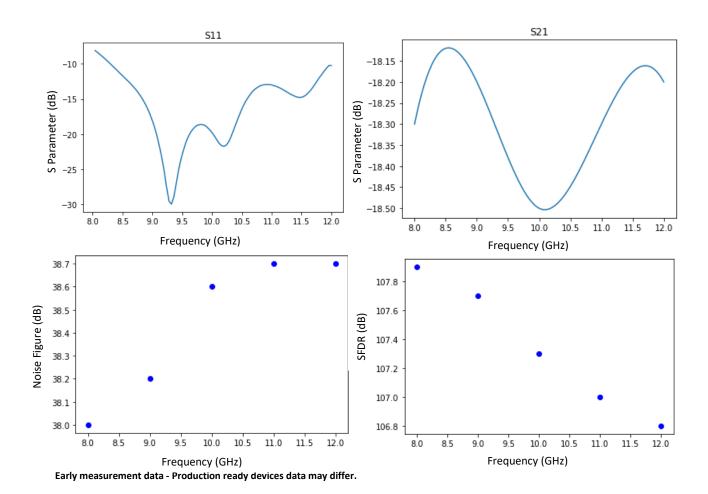



Fig 1.: Device dimensions (all units in mm). Final design may change.

Pin Configuration

Pin Number	Function
1	Ground
2	PD Bias
3	Laser Bias
4	N.C.

Power up procedure


- 1. Apply bias to Photodiode
- 2. Apply bias to Laser
 - Adjust bias voltage to get desired current draw.
 - b. 50 mA is recommended.

Notes: When connected to another module it is recommended to have the receiving photodiode biased and powered on prior to biasing the transmitting laser diode. Adding light to an unbiased laser will cause damage.

Typical Data results: Results for 08T12G variant shown

Notes:

- 1. Test Condition (Laser Bias 50 mA): 201 Points, 4 Avgs, 1% Smoothing
- 2. S21 measured with a reference standard RS-XXXXX module.

Inquiry Information

Sales: All inquiries regarding sales please contact Sales@NuPhotonics.com

General: If you are interested in a custom solution, general information, or engineering related information please contact lnquiry@NuPhotonics.com

IMPORTANT NOTICES AND DISCLAIMERS

Warranty: NUPHOTONICS PROVIDES ALL OF THE INFORMATION ON TECHNICAL AND RELIABILITY DATA. THIS INCLUDES INFORMATION PRESENTED IN DATA SHEETS, DESIGN FILES, APPLICATIONS, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

The information and resources are presented and intended for developers that are skilled and adequately qualified to work with this technology. You, the customer, are solely responsible for and accept full responsibility for selecting the appropriate NuPhotonics devices for your application. You accept the sole responsibility of designing, validating, and testing your application. You bear all responsibility for your application meeting standards, safety, security, and other regulatory requirements.

NuPhotonics retains the right to change these resources without notice. All rights are reserved for NuPhotonics. NuPhotonics grants you permission to use the information in these resources to design with NuPhotonics devices. Reproduction and display of these resources is prohibited. No Third-party licenses are offered. You will fully indemnify NuPhotonics against any claims, damages, costs, losses, and liabilities that arise from you using these resources.

NuPhotonics does not accept and objects to any terms you have proposed.

For terms and conditions for all NuPhotonics products please refer to www.nuphotonics.com Legal section.

Definitions: Product State

Alpha Build: Devices in Alpha build are in internal engineering build and testing stages. Major changes may happen for production build.

Beta Build: Devices in Beta build are for external customer and engineering sample testing stages. Minor changes may happen for production build.

Production Build: Customer ready devices. Small appearance changes may occur between devices.

Obsolete: Currently not supported.

Copyright © 2023, NuPhotonics LLC